skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McWilliams, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study presents observations of magnetopause reconnection and erosion at geosynchronous orbit, utilizing in situ satellite measurements and remote sensing ground‐based instruments. During the main phase of a geomagnetic storm, Geostationary Operational Environmental Satellites (GOES) 15 was on the dawnside of the dayside magnetopause (10.6 MLT) and observed significant magnetopause erosion, while GOES 13, observing duskside (14.6 MLT), remained within the magnetosphere. Combined observations from the THEMIS satellites and Super Dual Auroral Radar Network radars verified that magnetopause erosion was primarily caused by reconnection. While various factors may contribute to asymmetric erosion, the observations suggest that the weak reconnection rate on the duskside can play a role in the formation of asymmetric magnetopause shape. This discrepancy in reconnection rate is associated with the presence of cold dense plasma on the duskside of the magnetosphere, which limits the reconnection rate by mass loading, resulting in more efficient magnetopause erosion on the dawnside. 
    more » « less
  2. Abstract Magnetopause reconnection is the dominant mechanism for transporting solar wind energy and momentum into the magnetosphere‐ionosphere system. Magnetopause reconnection can occur along X‐lines of variable extent in the direction perpendicular to the reconnection plane. Identifying the spatial extent of X‐lines using satellite observations has critical limitations. However, we can infer the azimuthal extent of the X‐lines by probing the ionospheric signature of reconnection, the antisunward flow channels across the ionospheric Open‐Closed Field Line Boundary (OCB). We study 39 dayside magnetopause reconnection events using conjugate in situ and ionospheric observations to investigate the variability and controlling factors of the spatial extent of reconnection. We use spacecraft data from Time History of Events and Macroscale Interactions during Substorms (THEMIS) to identify in situ reconnection events. The width of the antisunward flow channels across the OCB is measured using the concurrent measurements from Super Dual Auroral Radar Network (SuperDARN). Also, the X‐line lengths are estimated by tracing the magnetic field lines from the ionospheric flow boundaries to the magnetopause. The solar wind driving conditions upstream of the bow shock are studied using solar wind monitors located at the L1 point. Results show that the magnetopause reconnection X‐lines can extend from a few Earth Radii (RE) to at least 22 RE in the GSM‐Y direction. Furthermore, the magnetopause reconnection tends to be spatially limited during high solar wind speed conditions. 
    more » « less
  3. The Super Dual Auroral Radar Network (SuperDARN) is an international network of ground-based, space weather radars which have operated continuously in the Arctic and Antarctic regions for more than 30 years. These high-frequency (HF) radars use over-the-horizon (OTH) radio wave propagation to detect ionospheric plasma structures across ranges of several thousand kilometers (km). As a byproduct of this technique, the transmitted radar signals frequently reflect from the Earth's surface and can be observed as ground backscatter echoes. The monthly files in this dataset contain maps of daily ground backscatter observations from the Clyde River (CLY) SuperDARN HF radar binned onto an equal-area 24 km grid. The CLY radar is located in Clyde River, Nunavut (70.49°N, 68.50°W) and is operated by the University of Saskatchewan (Principal Investigator: Kathryn A. McWilliams, kathryn.mcwilliams@usask.ca) with funding support from the Canada Foundation for Innovation, the Province of Saskatchewan, and the Canadian Space Agency. 
    more » « less
  4. The Super Dual Auroral Radar Network (SuperDARN) is an international network of ground-based, space weather radars which have operated continuously in the Arctic and Antarctic regions for more than 30 years. These high-frequency (HF) radars use over-the-horizon (OTH) radio wave propagation to detect ionospheric plasma structures across ranges of several thousand kilometers (km). As a byproduct of this technique, the transmitted radar signals frequently reflect from the Earth's surface and can be observed as ground backscatter echoes. The monthly files in this dataset contain maps of daily ground backscatter observations from the Rankin Inlet (RKN) SuperDARN HF radar binned onto an equal-area 24 km grid. The RKN radar is located in Rankin Inlet, Nunavut (62.83°N (North), 92.11°W (West)) and is operated by the University of Saskatchewan (Principal Investigator: Kathryn A. McWilliams, kathryn.mcwilliams@usask.ca) with funding support from the Canada Foundation for Innovation, the Province of Saskatchewan, and the Canadian Space Agency. 
    more » « less
  5. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
  6. The Super Dual Auroral Radar Network (SuperDARN) is an international network of high frequency coherent scatter radars that are used for monitoring the electrodynamics of the Earth’s upper atmosphere at middle, high, and polar latitudes in both hemispheres. pyDARN is an open-source Python-based library developed specifically for visualizing SuperDARN radar data products. It provides various plotting functions of different types of SuperDARN data, including time series plot, range-time parameter plot, fields of view, full scan, and global convection map plots. In this paper, we review the different types of SuperDARN data products, pyDARN’s development history and goals, the current implementation of pyDARN, and various plotting and analysis functionalities. We also discuss applications of pyDARN, how it can be combined with other existing Python software for scientific analysis, challenges for pyDARN development and future plans. Examples showing how to read, visualize, and interpret different SuperDARN data products using pyDARN are provided as a Jupyter notebook. 
    more » « less
  7. Abstract. We investigate the response of the mid-latitude thermospheric neutral winds to a sub-auroral polarization stream (SAPS) event. Using red line (F region) airglow data from two Fabry–Pérot interferometers (FPIs), and F-region ionospheric flow velocities from four Super Dual Auroral Radar Network (SuperDARN) radars, the drivers behind changes seen in the neutral winds are explored within the context of the larger SAPS structure. Different, although strong, neutral wind responses to the SAPS are seen at the two FPI sites, even though they are relatively close geographically. We attribute the wind differences to the varying balance of pressure gradient, ion drag, and Coriolis forces, which ultimately depend on proximity to the SAPS. At the FPI site equatorward of the SAPS, pressure gradient and Coriolis forces drive the winds equatorward and then westward. At the FPI site co-located with the SAPS, the ion drag is strong and results in the winds surging westward before turning eastward when becoming influenced by dawnside sunward plasma convection drifts. 
    more » « less
  8. Abstract An interplanetary shock can abruptly compress the magnetosphere, excite magnetospheric waves and field‐aligned currents, and cause a ground magnetic response known as a sudden commencement (SC). However, the transient (<∼1 min) response of the ionosphere‐thermosphere system during an SC has been little studied due to limited temporal resolution in previous investigations. Here, we report observations of a global reversal of ionospheric vertical plasma motion during an SC on 24 October 2011 using ∼6 s resolution Super Dual Auroral Radar Network ground scatter data. The dayside ionosphere suddenly moved downward during the magnetospheric compression due to the SC, lasting for only ∼1 min before moving upward. By contrast, the post‐midnight ionosphere briefly moved upward then moved downward during the SC. Simulations with a coupled geospace model suggest that the reversedvertical drift is caused by a global reversal of ionospheric zonal electric field induced by magnetospheric compression during the SC. 
    more » « less
  9. Abstract The intrinsic temporal nature of magnetic reconnection at the magnetopause has been an active area of research. Both temporally steady and intermittent reconnection have been reported. We examine the steadiness of reconnection using space‐ground conjunctions under quasi‐steady solar wind driving. The spacecraft suggests that reconnection is first inactive, and then activates. The radar further suggests that after activation, reconnection proceeds continuously but unsteadily. The reconnection electric field shows variations at frequencies below 10 mHz with peaks at 3 and 5 mHz. The variation amplitudes are ∼10–30 mV/m in the ionosphere, and 0.3–0.8 mV/m at the equatorial magnetopause. Such amplitudes represent 30%–60% of the peak reconnection electric field. The unsteadiness of reconnection can be plausibly explained by the fluctuating magnetic field in the turbulent magnetosheath. A comparison with a previous global hybrid simulation suggests that it is the foreshock waves that drive the magnetosheath fluctuations, and hence modulate the reconnection. 
    more » « less